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ABSTRACT

Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Never-
theless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized
into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be
lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical
simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required
to reconstruct a 3D continuous representation from the discrete one.

In previous work,1 we have presented a new approach for 3D geometric primitive extraction. In this paper, to
complete our automatic and comprehensive reverse engineering process, we propose a method to construct the
topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the
adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is
tested on 3D industrial meshes and bring a solution to recover B-Rep models.
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1. INTRODUCTION

In reverse engineering, the aim is to reconstruct a continuous model of an object (a B-Rep model for example)
from a discretized representation (as a 3D mesh). Several methods have been proposed these last years, Várady et
al present in2 a state of the art. These methods are often focused on the algorithm of detection of geometric
primitives (as planes, spheres, cones, torus...) which allow to extract from a discretized mesh, Figure 1(a), several
continuous object, as shown Figure 1(b). But, a key-point is to define the adjacency relations and the boundaries
between these primitives, called wires and represented in black in the Figure 1(c)), in order to obtain a B-Rep
representation (Figure 1(d)).

Figure 1: a) 3D mesh, b) Extracted primitives, c) Trimmed primitives and d) B-Rep model.
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The informations stored in the B-Rep model for each surface are: the primitive type, the parameters and
the references of the wires (which form the boundaries of the primitives). If two surfaces are neighbors, they
must reference a same part of their wire, so the adjacency informations between the surfaces are needed. Hence
after a first step to extract simple primitives,1 a second one lead to reconstruct the topology, determining the
neighbor primitives to other primitives. The intersections between the neighbor primitives define the surface
boundaries and allow to reconstruct the B-Rep model. Our proposed method reconstructs the topology using
both the parameterized representation of the extracted primitives and their corresponding point areas in the
mesh.

In this paper, a method to reconstruct a B-Rep model with a consistent topology from a 3D mesh is presented.
After a presentation of existing methods and the explication of the primitive extraction based on the previous
work1 in Section 2, the different steps are detailed in Section 3. Experimental results on simple and complex
CAD objects are proposed in Section 4 and conclusion and perspectives are presented in Section 5.

2. PREVIOUS WORK

Few papers propose a comprehensive process of reverse engineering, like3 or,4 whereas many papers deal with
one step. Furthermore methods exist, in other domains, to extract the relationship between the primitives and
to construct the consistent boundaries of the object.

Chappuis et al.5 use the relations between the primitives to construct the correct intersections and to be sure
that after the remeshing the edges corresponding to theses intersections are not removed by this remeshing. After
a computation of primitives belonging to the mesh, the adjacency relations are extracted from the sub-meshes
used to compute the primitives and they are stored in an adjacency graph. Face wires which guide the remeshing
are computed using this graph defined with a primitive by node and an edge if the primitive are neighbor. Even
if this method is not a method of B-Rep reconstruction, its definition of the relationship between the faces can
be used to extract consistent intersections and reconstruct a B-Rep model.

The difficulty for constructing the wires is to combine all the intersection curves, computed on all the pairs
of geometric primitives, in consistent wires that are continuous and closed curves. This may appear very similar
to the problem called “Boundary Evaluation”6 which allows recovering a B-Rep representation from a CSG
model. For example, Miller7 computes the intersections between the primitives to define the wires. In the case
of a CSG, the primitives are solid. For example, a cylinder is described by a cylindrical surface and by the two
extreme circular plans. After the intersections computations, the author has a set of edge which is labeled with
the information Cross-edge for the edge created by the intersection or Self-edge for the edge already existing in
the volumes. The wires construction is based on the definition of a path through the edges; if several path are
possible, the path using the Cross-edge is chosen. Thus, the wires are constructed for each faces with intersection
between the volumes. Nevertheless, the Boundary Evaluation problem is much easier as we have the exact set of
geometric volumes, whereas in our case we have surface, so we do not make the difference between the different
edges.

In the following sections, we propose a new method to reconstruct a consistent B-Rep model with wires
constructing using the relationship between the primitives using the method presented in1 to extract the geometric
primitives.

3. RECONSTRUCTING THE TOPOLOGY

3.1 Position in the reverse engineering process

The comprehensive process of reverse engineering that we have developed is decomposed into five steps (see
Figure 2). The first step is the geometric extraction and is described by Bénière et al. in.1 This method is
based on the curvature features (principal curvatures and directions) to label the mesh vertices with a primitive
type (one color by type in the Figure 2(b)) and extract point areas. Then, for each point area, a primitive is
computed, using an approximation according to the type of the primitive (Figure 2(c)). The point areas are
used to obtain the primitives, so extract only points contained in the primitive is more important than detect
all points corresponding to the primitive. Thus, points corresponding to a primitive can not be present in the
point area of its, like in the Figure 2(b).
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Figure 2: Comprehensive reverse engineering method: Step 1: primitive extraction, Step 2: adjacency graph
determination, Step 3: edge extraction, Step 4: wire construction and Step 5: B-Rep creation.

After this primitive extraction to trim these primitives and assemble its in a consistent B-Rep model, we used
four steps:

• Step 2: Adjacency relation determination (Section 3.2): this step defines the relation between the
extracted primitives (Figure 2(e)). It is based on common points (in blue in the Figure 2(d)) but it requires
before to extend point areas associated to each geometric primitive.

• Step 3: Edge extraction (Section 3.3): this step creates using the real intersections between the
adjacent primitives (Figure 2(f)) which will be cut, the edges (Figure 2(g)).

• Step 4: Wire construction (Section 3.4): this step assembles the edges in consistent wires which are
the boundaries of the object (Figure 2(h)).

• Step 5: B-Rep creation (Section 3.5): this step combines the informations of the previous step to
construct a B-Rep model (Figure 2(i)).

3.2 Adjacency Graph Determination

In order to get a B-Rep representation, each geometric primitive has to be trimmed, according to its intersec-
tions with the other ones. To know which intersection is interesting for the wires, the adjacency relations are
determined. For this purpose, an adjacency graph containing the relationship between the primitives is used.
Each primitive corresponds to a node of the graph, and an edge is added between two nodes if the two primitives
corresponding are neighbor.

The extraction of the point areas in the first step is based on a propagation method. A point area is initialized
by a vertex with curvature specific and the neighbor vertices with the same curvature characteristics (according
to the primitive type) are added to the area. During this construction, vertices on the primitive limits can
not be added in the point area. Indeed, the curvature computation is based on neighborhood study for each
vertex, so the vertex curvatures on the limit of primitive are disturbed by the vertices of the neighbor primitive.
To obtain point areas containing all vertices corresponding to the primitive, an extension of these areas is then
made. To extend a point area, the distance between adjacent vertices of the area and the corresponding primitive
is computed. If the distance is lower than a given threshold, the vertex is added to the point area and their
neighbors are studied too. Thus, using the informations containing in the primitives and in the point areas, the
extended areas are obtained, see Figure 3(a). In a second time, the extended areas allow to define the common
points (Figure 3(b)). For each pair of primitives, a set of common points is defined; if a point belongs to several
extended areas, it is added to the common points of the primitive pair corresponding to the extended areas. To
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represent the adjacency relations, an adjacency graph is used. It is initialized with a node by primitive. If the
set of common points corresponding to two primitives is not empty, an edge is added in the graph between the
two corresponding nodes as shown in Figure 3(c).

Figure 3: a) Extended areas, b) Common points, c) Adjacency graph.

3.3 Edge extraction

To recover the wires which are the boundaries trimming the geometric primitives, we first have to compute the
intersection curves between the geometric primitives. For this, the edges of the adjacency graph which define
the pairs of intersecting primitives are used. To compute the intersection curves between two primitives, many
methods have been proposed (see for example8). In our case, the method implemented in the Open Cascade
Library∗ is chosen. Its performs this operation and gives intersection curves as parametric curves defined by an
equation according to the type (a B-Spline curve or a circle for example) and two limit points.

In Figure 4(a), the set of all intersection curves between geometric primitives are presented. But, some
intersection curves are not really significant as, for instance, the one between the cylinder and the top of the
sphere 1. Then, the validity of each intersection curve is checked by comparing its with the common points
shared by the two corresponding primitives. If the distance between the common points and the intersection
curve is larger than a given threshold, the intersection curve will not be taken into account in the reconstruction
process. Then, in Figure 4(b), the red intersection curve is rejected whereas the green ones are validated.

Figure 4: a) Set of intersections curves, b) Intersection curves validated (in green) or rejected (in red) and
c) Intersection curves decomposed into edges, one by color.

∗http://www.opencascade.org
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In a second time, this validated curves are trimmed in edges (Figure 4(c)). The geometric primitives do not
intersect only two by two. For example, the two spheres and the cylinder have common intersections. More
generally, each intersection curve has to be decomposed into parts called edges. These edges are delimited by two
junctions which correspond to the intersection points between three adjacent geometric primitives. To explain
the edge construction, the example proposed in Figure 5 is used.

(a) (b) (c)

Figure 5: a) 3D mesh, b) Extracted geometric primitives (14 planes in this case) with the adjacency graph in
superimposition and c) Valid intersection curves.

First, all the intersection points between two intersection curves are computed, then they are tested to check
if they are junctions or not. A junction in a B-Rep model corresponds to a connection between two edges, so it
binds three primitives. Furthermore, these three primitives have to be adjacent in the B-Rep model, thus there
is a cycle in the adjacency graph between the three corresponding nodes. For each intersection point, two tests
are effectuated (one by column in Figure 6), illustrated by three examples (one by line in Figure 6):

• In the first example, the intersection point connect four primitives, so it is not a junction;

• In the second example, the intersection point is between three primitives, but they are not bind in the
adjacency graph by a cycle, thus this point is not a junction;

• In the third example, the intersection point connect three primitives which are bind in the adjacency graph
by a cycle, so this point is a correct junction.

Figure 6: Case 1: intersection point at the crossing of the intersection of 4 different primitives. Case 2: inter-
section point at the crossing of 3 geometric primitives but not link in the adjacency graph. Case 3: intersection
point at the crossing of 3 adjacent primitives so it is a junction.
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As a same junction can be extracted from several intersection curve pairs, a fusion is performed when two
junctions correspond to a same vertex. After the junction extraction and fusion, the edges are created by cutting
the valid intersection curves. To construct the wires, a closed path through the edges is constructed; so if an edge
has an extremity which is not connected with an another edge extremity, this edge can not belong to a closed
path. All of these edges are removed. Thus a set of valid edges is obtained as shown in the Figure 7.

Figure 7: Valid edges (one color by edge) extracted from the 3D mesh of Figure 5.

3.4 Wire Construction

To build the wires, one exterior and none or several interiors for each geometric primitive, closed paths going
each through a subset of edges have to be find. In fact, there are two cases: a wire can be created with only one
way with the edges (like for the plane in the Figure 8) or several paths are possible to create a wire (like for the
spheres in the Figure 8).

In the second case, for each edge a weight is attributed. This weight corresponds to the average distance
between the edge (Figure 8(a)) and the extended areas (Figure 8(a)), so the best edge have the minimal weight.
To find a path closer to the optimal, we use a simple sequential method. The wire construction is initialized with
the edge having the lowest weight. Then, the connected edges are studied and the one with the lowest weight is
selected and connected to the current wire. The process finish when the wire is closed or if there is no more edge
to connect. The wire is valid and kept in the first case but rejected in the second case. Thus, the wires of the
Figure 8(c) are constructed.

Figure 8: a) Valid edges have been consistently assembled using b) Extended areas to create c) The wires.

This building process ensures that all wires have a valid topology. They are closed and cannot self-intersect
(otherwise, there will be a supplementary junction on the self-intersection). After the B-Rep creation, we can
check the consistency of the wire, by assessing that the B-Rep model is closed: all the faces are entirely delimited
by the edges.

3.5 B-Rep Model Creation

Once the wires have been constructed, they are combined with the geometric primitives and the adjacency graph
to reconstruct the B-Rep model (see Figure 9). The B-Rep model is composed, for each geometric primitive, of
its type, its parameters, and the corresponding wires (one outer and none or several inners). In fact, each edge
is stored once and the wires reference the edges.
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Figure 9: By combining a) the geometric primitives, b) The adjacency graph and c) The wires, d) The definitive
B-Rep model is reconstructed.

The B-Rep structure can be saved easily in the STEP format. Indeed, this format has the same structure as a
B-Rep model, some informations are specific to each face, like the parameters or the wires, and some informations
are common to several faces, like the points or the edges. The Figure 10 presents a STEP simplified structure
of our test object. Each entity is defined and identified by a number which allow, for example, to describe the
edge 1, labeled #6, only once and to reference its several times, in the plane wire, labeled #5, and in a cylinder
wire, labeled #12.

Figure 10: Presentation of a STEP structure for our test object, some informations are specific to each face and
some informations are common to several faces.

4. EXPERIMENTAL RESULTS

4.1 Implementation

The method was implemented in the 3D Shop software produced by C4W † company. The program only requires
to tune some parameters. These parameters could be defined automatically, based on the characteristics of the
mesh (maximal or mean edge length). Once the process is started, it runs entirely automatically and there are
no interaction with the user.

4.2 Tests on simple 3D meshes

First tests are performed on two CAD meshes, both with a low complexity but with very different structures. The
first one, Figure 11, contains planes, cylinders and cones, and the wires correspond essentially to its intersections
between two primitives only. The second, Figure 12, was created with planes and cylinders but the wires are
formed by the intersection of many primitives (for instance 6 planes to the cylinder of the screw head).

†www.c4w.com
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In the two cases (Figures 11(b) and 12(b)), all the primitives are extracted. After the computation of wires
(Figures 11(c) and 12(c)), using weights in the second case, the B-Rep model is reconstructed (Figures 11(d)
and 12(d)).

(a) (b) (c) (d)

Figure 11: B-Rep reconstruction for PieceMotor : a) 3D mesh (1,746 vertices and 3,524 triangles), b) Extracted
geometric primitives (2 cones, 22 cylinders and 15 planes), c) Reconstructed wires and d) The final B-Rep model.

(a) (b) (c) (d)

Figure 12: B-Rep reconstruction for Screw : a) 3D mesh (966 vertices and 1,928 triangles), b) Extracted geometric
primitives (1 cone, 6 cylinders and 71 planes), c) Reconstructed wires and d) The final B-Rep model.

4.3 Tests on real 3D meshes

A second series of test is performed on two real CAD objects: a plate and a cylindrical adapter which are parts of
the I4L parallel robot designed at LIRMM.9 The CAD models were designed and discretized by using Solidworks
2010. The reconstruction method is applied to these meshes and gives the B-Rep models presented in Figures 13
and 14.

(a) (b) (c) (d)

Figure 13: B-Rep reconstruction for Plate: a) 3D mesh (1,585 vertices and 3,220 triangles), b) Extracted
geometric primitives (21 cylinders and 18 planes), c) Reconstructed wires and d) The final B-Rep model.

In Figure 15, a quantitative analysis of the reconstruction is presented. The distance between the initial 3D
mesh and the B-Rep model is computed. For this, the resulting B-Rep model is discretized very densely and
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(a) (b) (c) (d)

Figure 14: B-Rep reconstruction for CylindricalAdapter : a) 3D mesh (268 vertices and 540 triangles), b) Ex-
tracted geometric primitives (3 cylinders and 7 planes), c) Reconstructed wires and d) The final B-Rep model.

the distance between these points and the original mesh is obtained. In this example, the mean distance is very
low and the maximum distance (0.052 mm) remains very small with respect to the total length of the object.
Furthermore, the maximal error is located along the mesh edges. We conclude that the error is mainly due to
the discretization process which generates minimal errors on planar parts and maximal error on salient parts
and not to the reconstruction method itself.

Distance between the original mesh and the
recovered B-Rep model.

Minimum Mean Maximum
0.000 ≈0.000 0.052

Figure 15: Comparison between the recovered B-Rep model and the initial mesh.

4.4 Analysis of the computation time

The method was tested on a standard computer with an Intel Core 2 Duo 2.33GHz processor and 4Gb RAM.
Computation time of the comprehensive method is presented in Table 1 for the different 3D meshes. The
computation time does not only depend on the number of triangles. Thus, the reconstruction takes more
than 19 seconds for the PieceMotor mesh which have 3,524 triangles whereas it takes only 2 seconds for the
PlaqueReconstruction mesh which is composed of 3,220 triangles.

In fact, the computation time is related to the complexity of wires. For example, the reconstruction of the
Screw mesh (854 triangles, 9 geometric primitives) takes much more time that for the Plate mesh (3,220 triangles
and 39 geometric primitives). In particular, for each edge, the weight has to be computed and then the best path
must be found. So the operation which influences the most the overall computation time is the creation of the
topology and the construction of the wires.

Mesh Nb of Triangles Nb of Primitives Time
PieceMotor (Figure 11) 3,524 39 19s

Screw (Figure 12) 854 9 4s
Plate (Figure 13) 3,220 39 2s

Cylinder adapter (Figure 14) 540 10 1s
Table 1: Computation time (Intel Core 2 Duo 2.33GHz processor, 4Gb RAM ).
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5. CONCLUSION

In this paper, we have presented a method to construct a consistent topology from a set of geometric primitives
and the corresponding 3D mesh. This method is composed of three steps: the determination of an adjacency graph
which represents the neighborhood relationship between the primitives; the wire construction which computes
the intersection curves between the primitives in a consistent way by using the adjacency graph and the model
creation which fuses all the results to build a B-Rep representation. This method gives good results with CAD
meshes, independently of the mesh structure which can be composed of a lot of geometric primitives.

Our topology construction is quite robust, problems appear only if there are errors in the primitive extraction.
Indeed, the imprecision of the primitive detection raises many problems on the accuracy of the computation of
intersection curves. So, improvements have to be done in the primitive extraction, to be sure that all primitives
are extracted with a low error. An idea could be to find and add many constraints, like tangency constraints,
on the relationship between the primitives10, 11 to robustify the reconstruction process.

Nevertheless, the topology reconstruction can be also improved to be faster. We have notice, that the
operation taking more time is the edges assembling to create wires. Extract the best path through a valuated
graph is a classical problem and several algorithms can be used to find an optimal result in a shorter time.
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